بهبود بازشناسی چهره با یک تصویر از هر فرد به روش تولید تصاویر مجازی توسط شبکههای عصبی
نویسندگان
چکیده مقاله:
This paper deals with the problem of face recognition from a single image per person by producing virtual images using neural networks. To this aim, the person and variation information are separated and the associated manifolds are estimated using a nonlinear neural information processing model. For increasing the number of training samples in neural classifier, virtual images are produced for the neutral pose samples in a gallery dataset. By designing various structures of neural networks, the quality of virtually produced images, and consequently the recognition accuracy rate are improved. To obtain person information manifold codes giving better performance in describing the other persons and in generalizing, a learning method based on unsupervised clustering is presented. Applying this learning method and training classifier with virtual images, gives an accuracy rate of 83.63% on test dataset, which shows 12.73% improvement in comparison with training classifier using neutral pose samples.
منابع مشابه
بهبود مدل تفکیککننده منیفلدهای غیرخطی بهمنظور بازشناسی چهره با یک تصویر از هر فرد
Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...
متن کاملبهبود مدل تفکیک کننده منیفلدهای غیرخطی به منظور بازشناسی چهره با یک تصویر از هر فرد
یادگیری منیفلد یکی از روش های کاهش بعد مطرح به منظور استخراج ساختار غیرخطی داده با ابعاد بالا می باشد. تاکنون روش های زیادی به این منظور ارائه شده اند. در تمام این روش ها یک منیفلد به عنوان منیفلد جاسازی شده در داده استخراج می شود. در حالی که در خیلی از مسائل مربوط به دنیای واقعی یک منیفلد به تنهایی بیانگر ساختار داده نمی باشد. در این راستا بر مبنای تحقیقات قبلی، یک روش کاهش بعد غیرخطی مبتنی بر...
متن کاملبازشناسی چهره با تعداد نمونه های کم از هر فرد
بازشناسی چهره در طی چند دهه ی اخیر به طور گسترده ای مورد مطالعه قرار گرفته است و همچنان نیز، یکی از زمینه های فعال در بینایی ماشین می باشد. بسیاری از سیستم های بازشناسی چهره وابسته به مجموعه تصاویر ذخیره شده از هر فرد هستند. کارائی اینگونه سیستم ها، وقتی تعداد نمونه های آموزشی کمی ذخیره می شود، به شدت کاهش می یابد. . برای حل مشکل فوق روش زیرنمونه برداری برای افزایش داده های آموزشی ارائه شده ا...
15 صفحه اولاستفاده از ترکیب طبقه بندها برای بازشناسی چهره با یک نمونه آموزشی از هر فرد
بازشناسی چهره در دو دهه اخیر توجه ویژه ای را به خود جلب کرده است. با این وجود هنوز یکی از مسائل پیچیده ی حل نشده، تلقی می شود. چهره در اصل سه بعدی می باشد ولی به صورت ماتریسی دو بعدی ذخیره می شود و تغییراتی مانند زاویه و شدت نور، حالت چهره، زاویه دوربین نسبت به چهره و تغییرات زمانی، می تواند بازشناسی چهره را بسیار سخت کند. به نظر می رسد که در میان روش های مختلف بازشناسی چهره روش های کلی نگر ، م...
15 صفحه اولبازشناسی چهره مبتنی بر یک تصویر مرجع نرمال از هر فرد به کمک آنالیز آماری مشخصه های کلی و جزئی چهره
فن آوری بازشناسی چهره یکی از معدود روش های بیومتریک می باشد که با دارا بودن مزایایی از جمله دقت بالا و تهاجم پایین، در مواردی مانند امنیت اطلاعات، کنترل دستیابی به منابع و غیره مورد استفاده قرار می گیرد. به همین دلیل این فنآوری در طی بیست سال گذشته در عرصه های صنعتی و علمی مورد توجه بسیار قرار گرفته است. از دیگر دلایلی که استفاده از تصویر چهره را همچنان حائز اهمیت نگاه داشته است استفاده معمول ا...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 1
صفحات 33- 44
تاریخ انتشار 2011-09
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023